Precision genome editing: a small revolution for glycobiology.

نویسندگان

  • Catharina Steentoft
  • Eric P Bennett
  • Katrine T-B G Schjoldager
  • Sergey Y Vakhrushev
  • Hans H Wandall
  • Henrik Clausen
چکیده

Precise and stable gene editing in mammalian cell lines has until recently been hampered by the lack of efficient targeting methods. While different gene silencing strategies have had tremendous impact on many biological fields, they have generally not been applied with wide success in the field of glycobiology, primarily due to their low efficiencies, with resultant failure to impose substantial phenotypic consequences upon the final glycosylation products. Here, we review novel nuclease-based precision genome editing techniques enabling efficient and stable gene editing, including gene disruption, insertion, repair, modification and deletion. The nuclease-based techniques comprised of homing endonucleases, zinc finger nucleases, transcription activator-like effector nucleases, as well as the RNA-guided clustered regularly interspaced short palindromic repeat/Cas nuclease system, all function by introducing single or double-stranded breaks at a defined genomic sequence. We here compare and contrast the different techniques and summarize their current applications, highlighting cases from the field of glycobiology as well as pointing to future opportunities. The emerging potential of precision gene editing for the field is exemplified by applications to xenotransplantation; to probing O-glycoproteomes, including differential O-GalNAc glycoproteomes, to decipher the function of individual polypeptide GalNAc-transferases, as well as for engineering Chinese Hamster Ovary host cells for production of improved therapeutic biologics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advancing Chimeric Antigen Receptor-Engineered T-Cell Immunotherapy Using Genome Editing Technologies: Challenges and Future Prospects

Chimeric antigen receptor engineered-T (CAR-T) cells also named as living drugs, have been recently known as a breakthrough technology and were applied as an adoptive immunotherapy against different types of cancer. They also attracted widespread interest because of the success of B-cell malignancy therapy achieved by anti-CD19 CAR-T cells. Current genetic toolbox enabled the synthesis of CARs ...

متن کامل

Is Genome Editing Techniques the New Challenge for Plant Breeding?

Plant breeding is the “art and science” of the genetic improvement of crops to produce new varieties that had a large impact on crop yield and food production. Genetic variation is the engine that propels breeding to meet future challenges and this variation is due to intraand inter-specific recombination. The recombinant DNA technology marked the beginning of a new era, indeed conventional pla...

متن کامل

The new genomic editing system (CRISPR)

Over the past decades, progression in genetic element manipulation, and consequently, the treatment of diseases has been remarkable. It is worth noting that these genetic manipulations perform at different levels, including DNA and RNA. The earlier genomic editing techniques, including MN, ZFN , TALEN , performing their functions by creating double-stranded breaks (DSBs), and after breakage, th...

متن کامل

The Promises and Challenges of Precision Gene Editing in Animals of Agricultural Importance

We live in changing times—it has always been that way. But, now the times are changing more rapidly, dramatically, and unpredictably. The world must accommodate an increasing population that demands greater nutrition per person, better health, and greater energy consumption per person. As the world’s population rises to a predicted level of nearly 10 billion by 2050, most want sustainable growt...

متن کامل

CRISPR Genome Engineering for Human Pluripotent Stem Cell Research

The emergence of targeted and efficient genome editing technologies, such as repurposed bacterial programmable nucleases (e.g., CRISPR-Cas systems), has abetted the development of cell engineering approaches. Lessons learned from the development of RNA-interference (RNA-i) therapies can spur the translation of genome editing, such as those enabling the translation of human pluripotent stem cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Glycobiology

دوره 24 8  شماره 

صفحات  -

تاریخ انتشار 2014